login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008332
Sum of divisors of p-1, p prime.
5
1, 3, 7, 12, 18, 28, 31, 39, 36, 56, 72, 91, 90, 96, 72, 98, 90, 168, 144, 144, 195, 168, 126, 180, 252, 217, 216, 162, 280, 248, 312, 252, 270, 288, 266, 372, 392, 363, 252, 308, 270, 546, 360, 508, 399, 468, 576, 456, 342, 560, 450, 432, 744, 468, 511, 396, 476, 720, 672
OFFSET
1,2
COMMENTS
For all n (except for n = 2) gcd(A008332(n), prime(n)) = 1. - Lechoslaw Ratajczak, Aug 22 2018
REFERENCES
Yu. V. Linnik. The dispersion method in binary additive problems, Izdat. Leningrad Univ., Leningrad, 1961.
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 87.
LINKS
Michel Marcus, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
FORMULA
a(n) = A000203(A006093(n)). - Michel Marcus, Aug 19 2018
Sum_{k=1..n} a(k) ~ (zeta(2)*zeta(3)/zeta(6)) * n + O(n/log(n)^0.999) (Linnik, 1961). - Amiram Eldar, Mar 04 2021
MAPLE
for i from 1 to 500 do if isprime(i) then print(sigma(i-1)); fi; od;
MATHEMATICA
Table[DivisorSigma[1, Prime[n] - 1], {n, 80}] (* Vincenzo Librandi, Aug 20 2018 *)
PROG
(PARI) a(n) = sigma(prime(n)-1); \\ Michel Marcus, Aug 19 2018
(Magma) [DivisorSigma(1, NthPrime(n)-1): n in [1..60]]; // Vincenzo Librandi, Aug 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset corrected by Michel Marcus, Aug 20 2018
STATUS
approved