login
A008334
Number of distinct primes dividing p-1, where p = n-th prime.
5
0, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 4, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 4, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 3, 4, 3, 2, 3, 3, 2, 3, 3, 4, 2, 2, 2, 3, 3
OFFSET
1,4
COMMENTS
This is omega(p-1), i.e. A001221(A006093(n)). For Omega(p-1) = A001222(A006093(n)), see A023508. - Lekraj Beedassy, Oct 08 2004
Primes counted without multiplicity. - Harvey P. Dale, May 05 2018
REFERENCES
N. P. Ryzhova, Asymptotic formulae in a binary problem of shifted prime numbers (in Russian), Additive problems of number theory, Interuniv. Collect. Sci. Works, Kujbyshev 1985 (1985), pp. 25-31.
FORMULA
Sum_{k=1..n} a(k) ~ n*log(log(n))/log(n) + O(n/log(n)) (Ryzhova, 1985). - Amiram Eldar, Mar 05 2021
MAPLE
for i from 1 to 500 do if isprime(i) then print(nops(factorset(i-1))); fi; od;
MATHEMATICA
PrimeNu[#]&/@(Prime[Range[100]]-1) (* Harvey P. Dale, May 05 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition clarified by Harvey P. Dale, May 05 2018
STATUS
approved