login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274138
Triangle read by rows: Domination number for rectangular queens' graph Q(n,m), 1 <= n <= m.
3
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 3, 3, 3, 1, 2, 3, 3, 3, 4, 4, 1, 2, 3, 3, 4, 4, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8
OFFSET
1,8
COMMENTS
The queens graph Q(n X m) has the squares of the n X m chessboard as its vertices; two squares are adjacent if they are both in the same row, column, or diagonal of the board. A set D of squares of Q(n X m) is a dominating set for Q(n X m) if every square of Q(n X m) is either in D or adjacent to a square in D. The minimum size of a dominating set of Q(n X m) is the domination number, denoted by gamma(Q(n X m)).
Less formally, gamma(Q(n X m)) is the number of queens that are necessary and sufficient to all squares of the n X m chessboard be occupied or attacked.
Chessboard 8 X 11 is of special interest, because it cannot be dominated by 5 queens, although the larger boards 9 X 11, 10 X 11 and 11 X 11 are. It is conjectured that 8 X 11 is the only counterexample of this kind of monotonicity.
LINKS
S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, Domination of the rectangular queen’s graph, arXiv:1606.02060 [math.CO], 2016.
S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, Domination of the rectangular queen’s graph, 2016.
EXAMPLE
Table begins
m\n|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
--------------------------------------------------------
1 |1
2 |1 1
3 |1 1 1
4 |1 2 2 2
5 |1 2 2 2 3
6 |1 2 2 3 3 3
7 |1 2 3 3 3 4 4
8 |1 2 3 3 4 4 5 5
9 |1 2 3 4 4 4 5 5 5
10 |1 2 3 4 4 4 5 5 5 5
11 |1 2 3 4 4 5 5 6 5 5 5
12 |1 2 3 4 4 5 5 6 6 6 6 6
13 |1 2 3 4 5 5 6 6 6 7 7 7 7
14 |1 2 3 4 5 6 6 6 6 7 7 8 8 8
15 |1 2 3 4 5 6 6 6 7 7 7 8 8 8 9
16 |1 2 3 4 5 6 6 7 7 7 8 8 8 9 9 9
17 |1 2 3 4 5 6 7 7 7 8 8 8 9 9 9 9 9
18 |1 2 3 4 5 6 7 7 8 8 8 8 9 9 9 9 9 9
CROSSREFS
Diagonal elements are in A075458: Domination number for queens' graph Q(n).
Sequence in context: A280534 A129451 A097195 * A179301 A008334 A116858
KEYWORD
nonn,tabl
AUTHOR
Sandor Bozoki, Jun 11 2016
STATUS
approved