login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A129451
Expansion of f(-x, -x^3) f(-x, x^2) in powers of x where f(, ) is Ramanujan's general theta function.
4
1, -2, 2, -2, 1, -2, 2, -2, 3, 0, 2, -2, 2, -2, 0, -4, 2, -2, 2, 0, 1, -2, 4, -2, 0, -2, 2, -2, 3, -2, 2, 0, 2, -2, 0, -2, 4, -2, 2, 0, 2, -4, 0, -4, 0, -2, 2, -2, 1, 0, 4, -2, 2, 0, 2, -2, 2, -4, 2, 0, 3, -2, 2, -2, 0, 0, 2, -4, 2, 0, 2, -4, 2, -2, 0, 0, 2
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(-x) * phi(x^3) / chi(x) = f(-x^2)^3 * phi(x^3) / f(x)^2 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/6) * eta(q)^2 * eta(q^4)^2 * eta(q^6)^5 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ -2, 1, 0, -1, -2, -2, -2, -1, 0, 1, -2, -2, ...].
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1+(-1)^e)/2 if p == 5, 11 (mod 12), b(p^e) = e+1 if p == 1 (mod 12), b(p^e) = (-1)^e* (e+1) if p == 7 (mod 12).
a(n) = A129449(3*n).
EXAMPLE
G.f. = 1 - 2*x + 2*x^2 - 2*x^3 + x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 3*x^8 + 2*x^10 + ...
G.f. = q - 2*q^7 + 2*q^13 - 2*q^19 + q^25 - 2*q^31 + 2*q^37 - 2*q^43 + 3*q^49 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 6 n + 1}, DivisorSum[ m, KroneckerSymbol[ -4, #] KroneckerSymbol[ 12, m/#] &]]]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] QPochhammer[ x^2]^3 / QPochhammer[ -x]^2, {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-1/8) EllipticTheta[ 2, Pi/4, x^(1/2)] EllipticTheta[ 3, 0, x^3] QPochhammer[ x, -x], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 6*n + 1; sumdiv(n, d, kronecker( -4, d) * kronecker( 12, n/d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^5 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))};
CROSSREFS
Cf. A129449.
Sequence in context: A319506 A037809 A280534 * A097195 A274138 A179301
KEYWORD
sign
AUTHOR
Michael Somos, Apr 16 2007
STATUS
approved