login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129454
a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k).
5
1, 1, 1, 2, 6, 1536, 7680, 8806025134080, 61642175938560, 2168841254587541957294161920, 7562281854741110985626291951024209920, 1362299589723309231779453337910253309054734620740812800000000
OFFSET
0,4
COMMENTS
Conjecture: Let p be a prime and let ordp(n,p) denote the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Then we conjecture that the prime factorization of a(n) is given by ordp(a(n),p)=(floor(n/p))^3 + (floor(n/p^2))^3 + (floor(n/p^3))^3 + . . .. Compare with the comments in A092287.
LINKS
FORMULA
a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k), for n > 2, otherwise a(n) = 1.
MATHEMATICA
A129454[n_]:= Product[GCD[j, k, m], {j, n-1}, {k, n-1}, {m, n-1}];
Table[A129454[n], {n, 0, 20}] (* G. C. Greubel, Feb 07 2024 *)
PROG
(Magma)
A129454:= func< n | n le 1 select 1 else (&*[(&*[(&*[GCD(GCD(j, k), m): k in [1..n-1]]): j in [1..n-1]]): m in [1..n-1]]) >;
[A129454(n): n in [0..20]]; // G. C. Greubel, Feb 07 2024
(SageMath)
def A129454(n): return product(product(product(gcd(gcd(j, k), m) for k in range(1, n)) for j in range(1, n)) for m in range(1, n))
[A129454(n) for n in range(21)] # G. C. Greubel, Feb 07 2024
CROSSREFS
Sequence in context: A252739 A178773 A046857 * A317251 A140258 A071093
KEYWORD
nonn
AUTHOR
Peter Bala, Apr 16 2007
STATUS
approved