login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092287 a(n) = Product_{j=1..n} Product_{k=1..n} gcd(j,k). 11
1, 1, 2, 6, 96, 480, 414720, 2903040, 5945425920, 4334215495680, 277389791723520000, 3051287708958720000, 437332621360674939863040000, 5685324077688774218219520000, 15974941971638268369709427589120000, 982608696336737613503095822614528000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Conjecture: Let p be a prime and let ordp(n,p) denote the exponent of the highest power of p that divides n. For example, ordp(48,2)=4, since 48=3*(2^4). Then we conjecture that the prime factorization of a(n) is given by the formula: ordp(a(n),p) = (floor(n/p))^2 + (floor(n/p^2))^2 + (floor(n/p^3))^2 + .... Compare this to the de Polignac-Legendre formula for the prime factorization of n!: ordp(n!,p) = floor(n/p) + floor(n/p^2) + floor(n/p^3) + .... This suggests that a(n) can be considered as generalization of n!. See A129453 for the analog for a(n) of Pascal's triangle. See A129454 for the sequence defined as a triple product of gcd(i,j,k). - Peter Bala, Apr 16 2007

The conjecture is correct. - Charles R Greathouse IV, Apr 02 2013

a(n)/a(n-1) = n, n >= 1, if and only if n is noncomposite, otherwise a(n)/a(n-1) = n * f^2, f > 1. - Daniel Forgues, Apr 07 2013

Conjecture: For a product over a rectangle, f(n,m) = Product_{j=1..n} Product_{k=1..m} gcd(j,k), a factorization similar to the one given above for the square case takes place: ordp(f(n,m),p) = floor(n/p)*floor(m/p) + floor(n/p^2)*floor(m/p^2) + .... By way of directly computing the values of f(n,m), it can be verified that the conjecture holds at least for all 1 <= m <= n <= 200. - Andrey Kaydalov, Mar 11 2019

LINKS

T. D. Noe, Table of n, a(n) for n = 0..67

FORMULA

Also a(n) = Product_{k=1..n} Product_{j=1..n} lcm(1..floor(min(n/k, n/j))).

From Daniel Forgues, Apr 08 2013: (Start)

Recurrence: a(0) := 1; for n > 0: a(n) := n * (Product_{j=1..n-1} gcd(n,j))^2 * a(n-1) = n * A051190(n)^2 * a(n-1).

Formula for n >= 0: a(n) = n! * (Product_{j=1..n} Product_{k=1..j-1} gcd(j,k))^2. (End)

a(n) = n! * A224479(n)^2 (the last formula above).

a(n) = n$ * A224497(n)^4, n$ the swinging factorial A056040(n). - Peter Luschny, Apr 10 2013

MAPLE

f := n->mul(mul(igcd(j, k), k=1..n), j=1..n);

MATHEMATICA

a[0] = 1; a[n_] := a[n] = n*Product[GCD[k, n], {k, 1, n-1}]^2*a[n-1]; Table[a[n], {n, 0, 15}] (* Jean-Fran├žois Alcover, Apr 16 2013, after Daniel Forgues *)

PROG

(PARI) h(n, p)=if(n<p, 0, n\=p; h(n, p)+n^2)

a(n)=prod(i=1, primepi(n), my(p=prime(i)); p^h(n, p)) \\ Charles R Greathouse IV, Apr 02 2013

(Sage)

def A092287(n):

    R = 1

    for p in primes(n+1) :

        s = 0; r = n

        while r > 0 :

            r = r//p

            s += r*r

        R *= p^s

    return R

[A092287(i) for i in (0..15)]  # Peter Luschny, Apr 10 2013

CROSSREFS

Cf. A003989, A018806, A090494, A129365, A129439, A129453, A129454, A129455, A051190, A224479, A224497.

Sequence in context: A229052 A280117 A129364 * A035482 A322716 A007870

Adjacent sequences:  A092284 A092285 A092286 * A092288 A092289 A092290

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, based on a suggestion from Leroy Quet, Feb 03 2004

EXTENSIONS

Recurrence formula corrected by Daniel Forgues, Apr 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 18:34 EST 2020. Contains 338912 sequences. (Running on oeis4.)