login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224497
a(n) = sqrt(floor(n/2)! * Product_{k=1..n} Product_{i=1..k-1} gcd(k,i)).
2
1, 1, 1, 1, 2, 2, 12, 12, 96, 288, 5760, 5760, 829440, 829440, 46448640, 2090188800, 267544166400, 267544166400, 346737239654400, 346737239654400, 1109559166894080000, 209706682542981120000, 73816752255129354240000, 73816752255129354240000
OFFSET
0,5
COMMENTS
The order of the primes in the prime factorization of a(n) is given by
ord_{p}(a(n)) = (1/4)*Sum_{i>=1} floor(n/p^i)*(floor(n/p^i)-1) + (1/2)*Sum_{i>=1} floor(floor(n/2)/p^i).
For n > 1: a(n) = a(n-1) if and only if n is prime.
FORMULA
a(n) = sqrt(floor(n/2)! * A224479(n)).
A092287(n) = A056040(n) * a(n)^4.
MAPLE
A224497 := n -> sqrt(iquo(n, 2)!*mul(mul(igcd(k, i), i=1..k-1), k=1..n)):
seq(A224497(i), i = 0..23);
PROG
(Sage)
def A224497(n):
R = 1;
for p in primes(n):
s = 0; t = 0
r = n; u = n//2
while r > 0 :
r = r//p; u = u//p
t += u; s += r*(r-1)
R *= p^((t+s/2)/2)
return R
[A224497(i) for i in (0..23)]
CROSSREFS
Cf. A224479.
Sequence in context: A205957 A341432 A092144 * A305753 A181813 A059187
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 08 2013
STATUS
approved