login
A224494
Smallest k such that k*2*p(n)^2+1=q is prime and k*2*q^2+1 is also prime.
4
5, 2, 29, 41, 9, 2, 71, 30, 32, 6, 35, 11, 6, 50, 2, 20, 9, 120, 56, 21, 9, 75, 90, 51, 51, 29, 107, 9, 74, 155, 116, 11, 29, 86, 116, 35, 200, 12, 11, 39, 9, 105, 51, 422, 36, 65, 6, 32, 27, 44, 9, 41, 14, 116, 266, 41, 29, 5, 50, 95, 27, 71, 69, 330, 21, 194
OFFSET
1,1
MATHEMATICA
a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[k*2*q^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 66}] (* Jean-François Alcover, Apr 12 2013 *)
KEYWORD
nonn
AUTHOR
Pierre CAMI, Apr 08 2013
STATUS
approved