login
A328555
Coefficients in Göttsche's universal power series B_2(q) arising from enumeration of d-nodal curves in a linear system of dimension d on an algebraic surface.
1
1, 5, 2, 35, -140, 986, -6643, 48248, -362700, 2802510, -22098991, 177116726, -1438544962, 11814206036, -97940651274, 818498739637, -6888195294592, 58324130994782, -496519067059432, 4247266246317414, -36488059346439524
OFFSET
0,2
COMMENTS
The power series appears to be well defined, only the interpretation is conjectural.
Now proved by Tzeng. - Andrey Zabolotskiy, Jun 22 2021
LINKS
Lothar Göttsche, A conjectural generating function for numbers of curves on surfaces, Communications in mathematical physics 196.3 (1998): 523-533. Also arXiv:alg-geom/9711012, Nov 1997.
Yu-jong Tzeng, A proof of the Göttsche-Yau-Zaslow formula, Stanford University, 2010.
CROSSREFS
Cf. A328554.
Sequence in context: A347379 A224494 A095998 * A208927 A376999 A099612
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Oct 29 2019
STATUS
approved