login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328552
a(n) is the Severi degree for curves of degree n and cogenus 5.
5
0, 0, 0, 378, 90027, 2931831, 33720354, 224710119, 1068797961, 4037126346, 12886585236, 36161763120, 91629683271, 213681907449, 465104644470, 955060713621, 1865654931141, 3490074060228, 6286011239592, 10948910130774, 18510503248611, 30469179410667
OFFSET
1,4
COMMENTS
All terms are divisible by 9: (a(n)) = 9*(42, 10003, 325759, 3746706, 24967791, ...). Satisfies a linear recurrence with characteristic polynomial (x-1)^11. - M. F. Hasler, Oct 30 2019
LINKS
Florian Block, Computing node polynomials for plane curves, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643.
Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:0906.3828 [math.AG], 2009-2010.
Israel Vainsencher, Enumeration of n-fold tangent hyperplanes to a surface, arXiv preprint alg-geom/9312012, 1993-1994; J. Algebraic Geom., 4 (1995), 503-526. See Section 5.1.2.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = (81/40)*n^10 - (81/4)*n^9 - (27/8)*n^8 + (2349/4)*n^7 - (1044)*n^6 - (127071/20)*n^5 + (128859/8)*n^4 + (59097/2)*n^3 - (3528381/40)*n^2 - (946929/20)*n + 153513 for n > 3.
G.f.: 9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10)/(1 - x)^11. - M. F. Hasler, Oct 30 2019
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>9. - Colin Barker, Oct 30 2019
PROG
(PARI) {A328552(n, c=[9961, 305795, 2799396, 11895551, 28175817, 40446774, 36208620, 19852560, 6123600, 816480], p=9)=if(n<4, 0, sum(k=1, min(#c, n-=4), c[k]*p*=(n-k+1)/k, 378))} \\ M. F. Hasler, Oct 30 2019
(PARI) concat([0, 0, 0], Vec(9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Oct 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 29 2019
EXTENSIONS
New name and a(1)=a(2)=a(3)=0 from Andrey Zabolotskiy, Jan 19 2021
STATUS
approved