|
|
A171108
|
|
a(n) is the Severi degree for curves of degree n and cogenus 2.
|
|
7
|
|
|
0, 0, 21, 225, 882, 2370, 5175, 9891, 17220, 27972, 43065, 63525, 90486, 125190, 168987, 223335, 289800, 370056, 465885, 579177, 711930, 866250, 1044351, 1248555, 1481292, 1745100, 2042625, 2376621, 2749950, 3165582, 3626595, 4136175, 4697616, 5314320
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Severi degree N(n, delta) is the number of degree n plane curves which have delta nodes and pass through a generic configuration of n*(n+3)/2-delta points on the plane. delta is called the cogenus of these curves. See Fomin and Mikhalkin (2010), Section 1.2 "Combinatorial rules for Gromov-Witten invariants and Severi degrees" and 5 "Node polynomials". - Andrey Zabolotskiy, Jan 18 2021
|
|
LINKS
|
Florian Block, Susan Jane Colley, and Gary Kennedy, Computing Severi degrees with long-edge graphs, Bulletin of the Brazilian Mathematical Society, New Series 45.4 (2014): 625-647. Also arXiv:1303.5308 [math.AG], 2013 (see first page).
|
|
FORMULA
|
a(n) = 3*(n-1)*(n-2)*(3*n^2-3*n-11)/2.
a(1)=0, a(2)=0, a(3)=21, a(4)=225, a(5)=882, a(n) = 5*a(n-1)-10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Feb 01 2013
G.f.: 3*x^2*(-7-40*x+11*x^2) / (x-1)^5 . - R. J. Mathar, Dec 19 2013
|
|
MATHEMATICA
|
Table[3(n-1)(n-2)(3n^2-3n-11)/2, {n, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 0, 21, 225, 882}, 40] (* Harvey P. Dale, Feb 01 2013 *)
|
|
PROG
|
(PARI) concat([0, 0], Vec(3*x^3*(7 + 40*x - 11*x^2) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Nov 01 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|