|
|
A135120
|
|
Numbers such that the digital sum base 2 and the digital sum base 3 and the digital sum base 10 all are equal.
|
|
10
|
|
|
1, 21, 222, 223, 1230, 1231, 1502, 2200, 2201, 3012, 3013, 10431, 12214, 12215, 12250, 12251, 14102, 15003, 15021, 16011, 20040, 20041, 22130, 23211, 23230, 23231, 24003, 30070, 30071, 30105, 30231, 30321, 31005, 31150, 31151, 31420
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..1100
|
|
EXAMPLE
|
a(2)=21, since ds_2(21)=ds_3(21)=ds_10(21)=3.
|
|
MATHEMATICA
|
Select[Range[5000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 10]] &] (* G. C. Greubel, Sep 26 2016 *)
|
|
PROG
|
(PARI) is(n)=my(t=sumdigits(n)); t==hammingweight(n) && t==sumdigits(n, 3) \\ Charles R Greathouse IV, Sep 26 2016
|
|
CROSSREFS
|
Cf. A000040, A007953, A054899, A131451, A133620, A133900, A134599, A135110.
Sequence in context: A008421 A134585 A165402 * A027812 A171112 A171108
Adjacent sequences: A135117 A135118 A135119 * A135121 A135122 A135123
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Hieronymus Fischer, Dec 24 2007
|
|
STATUS
|
approved
|
|
|
|