The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171113 a(n) is the Severi degree for curves of degree n and cogenus 3. 4
 0, 0, 15, 675, 7915, 41310, 145383, 404185, 959115, 2029980, 3939295, 7139823, 12245355, 20064730, 31639095, 48282405, 71625163, 103661400, 146798895, 203912635, 278401515, 374248278, 496082695, 649247985, 839870475, 1074932500, 1362348543, 1711044615 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Florian Block, Computing node polynomials for plane curves, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643. Florian Block, Susan Jane Colley, and Gary Kennedy, Computing Severi degrees with long-edge graphs, Bulletin of the Brazilian Mathematical Society, New Series 45.4 (2014): 625-647. Also arXiv:1303.5308 [math.AG], 2013 (see first page). P. Di Francesco and C. Itzykson, Quantum Intersection Rings, in: The Moduli Space of Curves, BirkhĂ¤user Boston, 1995; on arXiv, arXiv:hep-th/9412175, 1994. See Proposition 2 (iii) and the following Remark (a). Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:0906.3828 [math.AG], 2009-2010. Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1). FORMULA a(n) = 9*n^6/2 - 27*n^5 + 9*n^4/2 + 423*n^3/2 - 229*n^2 - 829*n/2 + 525 for n > 2. - Andrey Zabolotskiy, Jan 19 2021 MATHEMATICA LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 15, 675, 7915, 41310, 145383, 404185, 959115}, 30] (* Harvey P. Dale, Jun 15 2021 *) PROG (Python) [0, 0] + [(9*d**6 + 9*d**4 + 423*d**3 - 829*d)//2 - 27*d**5 - 229*d**2 + 525 for d in range(3, 30)] # Andrey Zabolotskiy, Jan 12 2021 CROSSREFS Cf. A171108, A328551, A328552. Sequence in context: A349889 A279531 A079600 * A166186 A351182 A266519 Adjacent sequences:  A171110 A171111 A171112 * A171114 A171115 A171116 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Sep 27 2010 EXTENSIONS Terms a(7) and beyond from Andrey Zabolotskiy, Jan 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 30 02:41 EDT 2022. Contains 354913 sequences. (Running on oeis4.)