login
A171105
Multicomponent Gromov-Witten invariants for genus 0.
1
1, 1, 12, 675, 109781, 40047888
OFFSET
1,3
COMMENTS
In this entry and in A171104, a multicomponent Gromov-Witten invariant is the number of (possibly reducible, hence "multicomponent") curves in CP^2 of degree n and genus g passing through given 3n-1+g points, so this is the Severi degree N(n, delta) where cogenus delta = (n-1)*(n-2)/2 - g, cf. A171108 and references therein. In particular, a(5) = A171116(5). - Andrey Zabolotskiy, May 04 2022
LINKS
Florian Block, Computing node polynomials for plane curves, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643. See Appendix B.
Grigory Mikhalkin, Enumerative tropical algebraic geometry in R^2, arXiv:math/0312530 [math.AG], 2003-2004.
CROSSREFS
Cf. Gromov-Witten invariants, counting irreducible curves only: A171109, A171110, A171111.
Sequence in context: A177322 A060612 A203307 * A215686 A277691 A262383
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Sep 27 2010
EXTENSIONS
a(5)-a(6) added by Andrey Zabolotskiy, May 04 2022
STATUS
approved