login
A203307
a(n) = v(n+1)/(2*v(n)), where v = A203305.
4
1, 12, 672, 161280, 159989760, 645078712320, 10486399547473920, 684552162459097497600, 179100751368498596492083200, 187617350297573441752474740326400, 786539962489104046627462744981792358400
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*A028365(n) for n>0.
a(n) = (-1)^n * 2^(binomial(n+1,2) - 1) * QPochhammer(2,2,n). - G. C. Greubel, Aug 31 2023
MATHEMATICA
(* First program *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, z}] (* A203305 *)
Table[v[n+1]/v[n], {n, z}] (* A028365 *)
%/2 (* A203307 *)
(* Second program *)
Table[(-1)^n*2^Binomial[n+1, 2]*QPochhammer[2, 2, n]/2, {n, 20}] (* G. C. Greubel, Aug 31 2023 *)
PROG
(Magma) [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]])/2: n in [1..20]]; // G. C. Greubel, Aug 31 2023
(SageMath) [product(2^(n+1) - 2^(k+1) for k in range(n))/2 for n in range(1, 21)] # G. C. Greubel, Aug 31 2023
CROSSREFS
Sequence in context: A295870 A177322 A060612 * A171105 A215686 A277691
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
STATUS
approved