login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A203310
a(n) = A203309(n+1)/A203309(n).
3
1, 2, 15, 252, 7560, 356400, 24324300, 2270268000, 277880803200, 43197833952000, 8315583035760000, 1942008468966720000, 540988073497872000000, 177227692877902867200000, 67457290601651778828000000, 29522484828017013792960000000, 14721879100904484211422720000000
OFFSET
0,2
LINKS
FORMULA
a(n) ~ sqrt(Pi) * 2^(n+3) * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Jan 25 2019
a(n) = (n!*(2*n+2)!)/(2^n*(n+2)!). - G. C. Greubel, Aug 29 2023
MAPLE
b:= proc(n) option remember; uses LinearAlgebra;
Determinant(VandermondeMatrix([i*(i+1)/2$i=1..n]))
end:
a:= n-> b(n+1)/b(n):
seq(a(n), n=0..16); # Alois P. Heinz, Aug 29 2023
MATHEMATICA
(* First program *)
f[j_]:= j*(j+1)/2; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, z}] (* A203309 *)
Table[v[n+1]/v[n], {n, 0, z-1}] (* A203310 *)
(* Second program *)
Table[(n!*(2*n+2)!)/(2^n*(n+2)!), {n, 0, 20}] (* G. C. Greubel, Aug 29 2023 *)
PROG
(Python)
from operator import mul
from functools import reduce
def f(n): return n*(n + 1)//2
def v(n): return 1 if n==1 else reduce(mul, (f(k) - f(j) for k in range(2, n + 1) for j in range(1, k)))
print([v(n + 1)//v(n) for n in range(1, 15)]) # Indranil Ghosh, Jul 24 2017
(Magma) F:= Factorial; [(F(n)*F(2*n+2))/(2^n*F(n+2)): n in [0..20]]; // G. C. Greubel, Aug 29 2023
(SageMath) f=factorial; [(f(n)*f(2*n+2))/(2^n*f(n+2)) for n in range(21)] # G. C. Greubel, Aug 29 2023
CROSSREFS
Sequence in context: A292798 A379886 A221100 * A102555 A264907 A195737
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
EXTENSIONS
Name corrected by Vaclav Kotesovec, Jan 25 2019
a(0)=1 prepended by Alois P. Heinz, Aug 29 2023
STATUS
approved