login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203311 Vandermonde determinant of (1,2,3,...,F(n+1)), where F=A000045 (Fibonacci numbers). 5
1, 1, 2, 48, 30240, 1596672000, 18172937502720000, 122457316443772566896640000, 1284319496829094129116119090331648000000, 55603466527142141932748234118927499493985767915520000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Each term divides its successor, as in A123741. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203313.

For a signed version, see A123742. For a guide to related sequences, including sequences of Vandermonde permanents, see A093883.

LINKS

Table of n, a(n) for n=1..10.

FORMULA

a(n) ~ c * d^n * phi^(n^3/3 + n^2/2) / 5^(n^2/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio, d = 0.120965069090607877853843907542896935455225485213927649233956250456604334... and c = 197.96410442333389877538426269... - Vaclav Kotesovec, Apr 08 2021

EXAMPLE

v(4) = (2-1)*(3-1)*(3-2)*(5-1)*(5-2)*(5-3).

MAPLE

with(LinearAlgebra): F:= combinat[fibonacci]:

a:= n-> Determinant(VandermondeMatrix([F(i)$i=2..n+1])):

seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017

MATHEMATICA

f[j_] := Fibonacci[j + 1]; z = 15;

v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]

d[n_] := Product[(i - 1)!, {i, 1, n}]

Table[v[n], {n, 1, z}]                (* A203311 *)

Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A123741 *)

Table[v[n]/d[n], {n, 1, 13}]          (* A203313 *)

PROG

(Python)

from sympy import fibonacci, factorial

from operator import mul

from functools import reduce

def f(j): return fibonacci(j + 1)

def v(n): return 1 if n==1 else reduce(mul, [reduce(mul, [f(k) - f(j) for j in range(1, k)]) for k in range(2, n + 1)])

print([v(n) for n in range(1, 16)]) # Indranil Ghosh, Jul 26 2017

CROSSREFS

Cf. A000045, A123741, A123742, A203313, A203518.

Sequence in context: A090770 A081960 A123742 * A343694 A295177 A098694

Adjacent sequences:  A203308 A203309 A203310 * A203312 A203313 A203314

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jan 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:52 EST 2021. Contains 349594 sequences. (Running on oeis4.)