login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203311
Vandermonde determinant of (1,2,3,...,F(n+1)), where F=A000045 (Fibonacci numbers).
5
1, 1, 1, 2, 48, 30240, 1596672000, 18172937502720000, 122457316443772566896640000, 1284319496829094129116119090331648000000, 55603466527142141932748234118927499493985767915520000000, 26110840958525805673462196263372614726154694067746586937781385166848000000000
OFFSET
0,4
COMMENTS
Each term divides its successor, as in A123741. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203313.
For a signed version, see A123742. For a guide to related sequences, including sequences of Vandermonde permanents, see A093883.
FORMULA
a(n) ~ c * d^n * phi^(n^3/3 + n^2/2) / 5^(n^2/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio, d = 0.120965069090607877853843907542896935455225485213927649233956250456604334... and c = 197.96410442333389877538426269... - Vaclav Kotesovec, Apr 08 2021
EXAMPLE
v(4) = (2-1)*(3-1)*(3-2)*(5-1)*(5-2)*(5-3).
MAPLE
with(LinearAlgebra): F:= combinat[fibonacci]:
a:= n-> Determinant(VandermondeMatrix([F(i)$i=2..n+1])):
seq(a(n), n=0..12); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
f[j_] := Fibonacci[j + 1]; z = 15;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}]
Table[v[n], {n, 1, z}] (* A203311 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A123741 *)
Table[v[n]/d[n], {n, 1, 13}] (* A203313 *)
PROG
(Python)
from sympy import fibonacci, factorial
from operator import mul
from functools import reduce
def f(j): return fibonacci(j + 1)
def v(n): return 1 if n==1 else reduce(mul, [reduce(mul, [f(k) - f(j) for j in range(1, k)]) for k in range(2, n + 1)])
print([v(n) for n in range(1, 16)]) # Indranil Ghosh, Jul 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
STATUS
approved