|
|
A090770
|
|
a(n) = 2^(n^2 + 2n + 1)*Product_{j=1..n} (4^j - 1).
|
|
8
|
|
|
2, 48, 23040, 185794560, 24257337753600, 50821645356918374400, 1704875112338069448032256000, 915241991059360703024740763172864000, 7861748876453505095791592854589753555681280000, 1080506416218846625176535970968094253434513802154475520000, 2376056471052200653607636735377527394627947719754523173734842368000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4). This is the sequence obtained by (illegally) setting p = 2.
|
|
LINKS
|
|
|
MATHEMATICA
|
Table[2^(n^2+2n+1) Product[4^j-1, {j, n}], {n, 0, 10}] (* Harvey P. Dale, May 14 2022 *)
|
|
PROG
|
(Python)
from math import prod
def A090770(n): return prod((1<<i)-1 for i in range(2, 2*n+1, 2)) << (n+1)**2 # Chai Wah Wu, Jun 20 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|