The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090770 a(n) = 2^(n^2 + 2n + 1)*Product_{j=1..n} (4^j - 1). 8
 2, 48, 23040, 185794560, 24257337753600, 50821645356918374400, 1704875112338069448032256000, 915241991059360703024740763172864000, 7861748876453505095791592854589753555681280000, 1080506416218846625176535970968094253434513802154475520000, 2376056471052200653607636735377527394627947719754523173734842368000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4). This is the sequence obtained by (illegally) setting p = 2. LINKS Table of n, a(n) for n=0..10. G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006. MATHEMATICA Table[2^(n^2+2n+1) Product[4^j-1, {j, n}], {n, 0, 10}] (* Harvey P. Dale, May 14 2022 *) PROG (Python) from math import prod def A090770(n): return prod((1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 03:33 EDT 2024. Contains 375857 sequences. (Running on oeis4.)