login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001309
Order of real Clifford group L_n connected with Barnes-Wall lattices in dimension 2^n.
13
2, 16, 2304, 5160960, 178362777600, 96253116206284800, 819651496316379542323200, 110857799304670627788849414144000, 238987988705420266773820308079698247680000
OFFSET
0,1
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), arXiv:quant-ph/9608006, 1996-1997; IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
G. Nebe, E. M. Rains and N. J. A. Sloane, The invariants of the Clifford groups, arXiv:math/0001038 [math.CO], 2000; Des. Codes Crypt. 24 (2001), 99-121.
MAPLE
2^(n^2+n+2) * (2^n - 1) * product('2^(2*i)-1', 'i'=1..n-1);
MATHEMATICA
a[0] = 2; a[n_] := 2^(n^2+n+2) * (2^n-1) * Product[2^(2*i)-1, {i, 1, n-1}]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jul 16 2015, after Maple *)
PROG
(Python)
from math import prod
def A001309(n): return 2 if n == 0 else ((1<<n)-1)*prod((1<<i)-1 for i in range(2, 2*n-1, 2)) << n*(n+1)+2 # Chai Wah Wu, Jun 20 2022
CROSSREFS
2^(2n+2) times order of Chevalley group D_n (2) (cf. A001308). Twice A014115. See also A014116, A003956 (for the complex group).
Sequence in context: A091479 A016031 A331691 * A132569 A165644 A338005
KEYWORD
nonn,easy,nice
STATUS
approved