login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001310
Number of ways of making change for n cents using coins of 1, 2, 4, 10, 20, 40, 100 cents.
3
1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 50, 50, 62, 62, 77, 77, 93, 93, 112, 112, 134, 134, 159, 159, 187, 187, 218, 218, 252, 252, 293, 293, 337, 337, 388, 388, 442, 442, 503, 503, 571, 571, 646, 646, 728, 728, 817, 817, 913
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 4, 10, 20, 40, and 100. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)*(1-x^20)*(1-x^40)*(1-x^100)).
EXAMPLE
1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 6*x^7 + 9*x^8 + 9*x^9 + 13*x^10 + ...
MATHEMATICA
a[n_] := SeriesCoefficient[1/((1 - x)(1 - x^2)(1 - x^4)(1 - x^10)(1 - x^40)(1 - x^100)), {x, 0, n}]
Table[Length[FrobeniusSolve[{1, 2, 4, 10, 20, 40, 100}, n]], {n, 0, 60}] (* Harvey P. Dale, Nov 13 2013 *)
CROSSREFS
Sequence in context: A060027 A001362 A358206 * A328422 A029009 A340280
KEYWORD
nonn
STATUS
approved