The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001310 Number of ways of making change for n cents using coins of 1, 2, 4, 10, 20, 40, 100 cents. 3
 1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 50, 50, 62, 62, 77, 77, 93, 93, 112, 112, 134, 134, 159, 159, 187, 187, 218, 218, 252, 252, 293, 293, 337, 337, 388, 388, 442, 442, 503, 503, 571, 571, 646, 646, 728, 728, 817, 817, 913 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of partitions of n into parts 1, 2, 4, 10, 20, 40, and 100. - Joerg Arndt, Sep 05 2014 REFERENCES R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316. G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 180 Index entries for linear recurrences with constant coefficients, order 177. Index entries for sequences related to making change. FORMULA G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)*(1-x^20)*(1-x^40)*(1-x^100)). EXAMPLE 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 6*x^7 + 9*x^8 + 9*x^9 + 13*x^10 + ... MATHEMATICA a[n_] := SeriesCoefficient[1/((1 - x)(1 - x^2)(1 - x^4)(1 - x^10)(1 - x^40)(1 - x^100)), {x, 0, n}] Table[Length[FrobeniusSolve[{1, 2, 4, 10, 20, 40, 100}, n]], {n, 0, 60}] (* Harvey P. Dale, Nov 13 2013 *) CROSSREFS Sequence in context: A060027 A001362 A358206 * A328422 A029009 A340280 Adjacent sequences: A001307 A001308 A001309 * A001311 A001312 A001313 KEYWORD nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 9 16:40 EDT 2024. Contains 375765 sequences. (Running on oeis4.)