login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001362
Number of ways of making change for n cents using coins of 1, 2, 4, 10 cents.
2
1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 49, 49, 60, 60, 73, 73, 87, 87, 103, 103, 121, 121, 141, 141, 163, 163, 187, 187, 213, 213, 242, 242, 273, 273, 307, 307, 343, 343, 382, 382, 424, 424, 469, 469, 517, 517, 568, 568, 622, 622
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 4, and 10. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)).
MAPLE
1/(1-x)/(1-x^2)/(1-x^4)/(1-x^10): seq(coeff(series(%, x, n+1), x, n), n=0..80);
MATHEMATICA
nn = 1000; CoefficientList[Series[1/((1 - x^1) (1 - x^2) (1 - x^4) (1 - x^10)), {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
Table[Length[FrobeniusSolve[{1, 2, 4, 10}, n]], {n, 0, 60}] (* Harvey P. Dale, May 20 2021 *)
PROG
(PARI) a(n)=floor((n\2+8)*(2*(n\2)^2+11*(n\2)+18)/120) \\ Tani Akinari, May 14 2014
CROSSREFS
Twice A001304.
Sequence in context: A001364 A029010 A060027 * A358206 A001310 A328422
KEYWORD
nonn
STATUS
approved