OFFSET
0,2
COMMENTS
Ways of making change for n cents using coins of 1, 2 and 5 cents, if two different kinds of 1-cent coin are counted as different. - Matthew Vandermast, Feb 27 2003
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 113, Example (2), D(n; 1,2,4,10).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 198
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1,1,-2,0,2,-1).
FORMULA
G.f.: 1/((1-x)^2*(1-x^2)*(1-x^5)) = 1 / ((1+x)*(x^4+x^3+x^2+x+1)*(x-1)^4).
a(n) = floor((n+8)*(2*n^2+11*n+18)/120). - Tani Akinari, May 14 2014
MAPLE
a:= proc(n) local m, r; m:= iquo(n, 10, 'r'); r:= r+1; (53+ (135+ 100*m) *m) *m/6+ [1, 2, 4, 6, 9, 13, 18, 24, 31, 39][r]+ [0, 5, 11, 18, 26, 35, 45, 56, 68, 81][r]*m+ (r-1)*5 *m^2 end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 05 2008
MATHEMATICA
CoefficientList[Series[1/((1-x)^2*(1-x^2)*(1-x^5)), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 24 2012 *)
LinearRecurrence[{2, 0, -2, 1, 1, -2, 0, 2, -1}, {1, 2, 4, 6, 9, 13, 18, 24, 31}, 60] (* Harvey P. Dale, Oct 03 2018 *)
PROG
(PARI) a(n)=floor((n+8)*(2*n^2+11*n+18)/120) \\ Tani Akinari, May 14 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved