login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175780
Partial sums of floor(n^2/24).
1
0, 0, 0, 0, 0, 1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 70, 83, 98, 114, 132, 152, 174, 198, 224, 252, 282, 314, 349, 386, 426, 468, 513, 561, 612, 666, 723, 783, 846, 912, 982, 1055, 1132, 1212, 1296, 1384, 1476, 1572, 1672, 1776
OFFSET
0,7
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n - 37)/288).
a(n) = floor((2*n+11)*(n-2)^2/144).
a(n) = ceiling((2*n-9)*(n+3)^2/144).
a(n) = a(n-24) + (n+1)*(n-24) + 198, n > 23.
G.f.: x^5*(1 - x + x^2 - x^3 + x^4) / ( (1+x)*(1+x^2)*(x^4-x^2+1)*(x^2-x+1)*(1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Dec 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-12) - 3*a(n-13) + 3*a(n-14) - a(n-15). - R. J. Mathar, Dec 06 2010
EXAMPLE
a(24) = 0 + 0 + 0 + 0 + 0 + 1 + 1 + 2 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 12 + 13 + 15 + 16 + 18 + 20 + 22 + 24 = 198.
MAPLE
seq(ceil((2*n-9)*(n+3)^2/144), n=0..50)
PROG
(Magma) [Round((2*n+1)*(2*n^2+2*n-37)/288): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
CROSSREFS
Cf. A175777.
Sequence in context: A079717 A247179 A319158 * A114830 A177239 A001304
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 04 2010
STATUS
approved