login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175777
Partial sums of floor(n^2/16).
2
0, 0, 0, 0, 1, 2, 4, 7, 11, 16, 22, 29, 38, 48, 60, 74, 90, 108, 128, 150, 175, 202, 232, 265, 301, 340, 382, 427, 476, 528, 584, 644, 708, 776, 848, 924, 1005, 1090, 1180, 1275, 1375, 1480, 1590, 1705, 1826, 1952, 2084, 2222, 2366, 2516, 2672
OFFSET
0,6
COMMENTS
There are several sequences of integers of the form floor(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,9,11,12,15,16,24).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n - 21)/192).
a(n) = floor((n-1)*(2*n^2 + 5*n - 15)/96).
a(n) = ceiling((n+2)*(2*n^2 - n - 18)/96).
a(n) = round(n*(n+4)*(2*n - 5)/96).
a(n) = a(n-16) + (n+1)*(n-16) + 90, n > 15.
G.f.: x^4*(1 - x + x^2) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^4 ). - R. J. Mathar, Dec 06 2010
a(n)= 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11). - R. J. Mathar, Dec 06 2010
EXAMPLE
a(16) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 9 + 10 + 12 + 14 + 16 = 90.
MAPLE
seq(round(n*(n+4)*(2*n-5)/96), n=0..50)
MATHEMATICA
Accumulate[Table[Floor[n^2/16], {n, 0, 60}]] (* Harvey P. Dale, Dec 13 2010 *)
PROG
(Magma) [Round((2*n+1)*(2*n^2+2*n-21)/192): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
(PARI) concat([0, 0, 0, 0], Vec((1-x+x^2)/((1+x)*(x^2+1)*(x^4+1)*(x-1)^4)+O(x^99))) \\ Charles R Greathouse IV, Oct 18 2011
CROSSREFS
Sequence in context: A217838 A212367 A225088 * A098574 A212366 A309838
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 04 2010
STATUS
approved