Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 May 06 2024 06:51:28
%S 0,0,0,0,1,2,4,7,11,16,22,29,38,48,60,74,90,108,128,150,175,202,232,
%T 265,301,340,382,427,476,528,584,644,708,776,848,924,1005,1090,1180,
%U 1275,1375,1480,1590,1705,1826,1952,2084,2222,2366,2516,2672
%N Partial sums of floor(n^2/16).
%C There are several sequences of integers of the form floor(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,9,11,12,15,16,24).
%H Vincenzo Librandi, <a href="/A175777/b175777.txt">Table of n, a(n) for n = 0..10000</a>
%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,0,1,-3,3,-1).
%F a(n) = round((2*n+1)*(2*n^2 + 2*n - 21)/192).
%F a(n) = floor((n-1)*(2*n^2 + 5*n - 15)/96).
%F a(n) = ceiling((n+2)*(2*n^2 - n - 18)/96).
%F a(n) = round(n*(n+4)*(2*n - 5)/96).
%F a(n) = a(n-16) + (n+1)*(n-16) + 90, n > 15.
%F G.f.: x^4*(1 - x + x^2) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^4 ). - _R. J. Mathar_, Dec 06 2010
%F a(n)= 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11). - _R. J. Mathar_, Dec 06 2010
%e a(16) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 9 + 10 + 12 + 14 + 16 = 90.
%p seq(round(n*(n+4)*(2*n-5)/96),n=0..50)
%t Accumulate[Table[Floor[n^2/16],{n,0,60}]] (* _Harvey P. Dale_, Dec 13 2010 *)
%o (Magma) [Round((2*n+1)*(2*n^2+2*n-21)/192): n in [0..60]]; // _Vincenzo Librandi_, Jun 22 2011
%o (PARI) concat([0,0,0,0],Vec((1-x+x^2)/((1+x)*(x^2+1)*(x^4+1)*(x-1)^4)+O(x^99))) \\ _Charles R Greathouse IV_, Oct 18 2011
%K nonn,easy
%O 0,6
%A _Mircea Merca_, Dec 04 2010