login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212366
Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 7).
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 38, 52, 76, 117, 184, 288, 442, 662, 972, 1414, 2063, 3047, 4572, 6952, 10645, 16303, 24857, 37672, 56821, 85541, 128948, 195103, 296548, 452501, 692053, 1058990, 1619311, 2473171, 3773889, 5757885, 8791090
OFFSET
0,9
LINKS
FORMULA
G.f. satisfies: A(x) = 1+A(x)*(x-x^7*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-7} a(k)*a(n-7-k) if n>0; a(0) = 1.
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(8) = 2: UDUDUDUDUDUDUDUD, UUUUUUUUDDDDDDDD.
a(9) = 4: UDUDUDUDUDUDUDUDUD, UDUUUUUUUUDDDDDDDD, UUUUUUUUDDDDDDDDUD, UUUUUUUUDUDDDDDDDD.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-7-k), k=1..n-7))
end:
seq(a(n), n=0..50);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+A*(x-x^7*(1-A)), A), x, n+1), x, n):
seq(a(n), n=0..50);
MATHEMATICA
With[{k = 7}, CoefficientList[Series[(1 - x + x^k - Sqrt[(1 - x + x^k)^2 - 4*x^k]) / (2*x^k), {x, 0, 40}], x]] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Column k=7 of A212363.
Sequence in context: A225088 A175777 A098574 * A309838 A334251 A175776
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 10 2012
STATUS
approved