login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212369
Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 10).
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 68, 85, 112, 156, 226, 333, 490, 712, 1016, 1421, 1949, 2630, 3512, 4676, 6256, 8464, 11620, 16187, 22811, 32366, 46005, 65225, 91967, 128786, 179140, 247861, 341885, 471332, 651041, 902679
OFFSET
0,12
LINKS
FORMULA
G.f. satisfies: A(x) = 1+A(x)*(x-x^10*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-10} a(k)*a(n-10-k) if n>0; a(0) = 1.
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(11) = 2: UDUDUDUDUDUDUDUDUDUDUD, UUUUUUUUUUUDDDDDDDDDDD.
a(12) = 4: UDUDUDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUUUDDDDDDDDDDD, UUUUUUUUUUUDDDDDDDDDDDUD, UUUUUUUUUUUDUDDDDDDDDDDD.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-10-k), k=1..n-10))
end:
seq(a(n), n=0..60);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+A*(x-x^10*(1-A)), A), x, n+1), x, n):
seq(a(n), n=0..60);
MATHEMATICA
With[{k = 10}, CoefficientList[Series[(1 - x + x^k - Sqrt[(1 - x + x^k)^2 - 4*x^k]) / (2*x^k), {x, 0, 50}], x]] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Column k=10 of A212363.
Sequence in context: A025739 A000124 A152947 * A212368 A217838 A212367
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 10 2012
STATUS
approved