login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212371
Self-convolution yields A212370.
1
1, 1, 7, 110, 2875, 109683, 5678706, 380631612, 31942104109, 3272150145947, 401101904099311, 57890233456712428, 9706532459502104648, 1869487973632573739154, 409621529316840179292622, 101253590975320030584465534, 28030292175164530782257192631
OFFSET
0,3
COMMENTS
A212370 satisfies: 1 = Sum_{n>=0} A212370(n)*x^n*[Sum_{k=0..n+1} binomial(n+1, k)^2*(-x)^k]^2.
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 110*x^3 + 2875*x^4 + 109683*x^5 +...
such that
A(x)^2 = 1 + 2*x + 15*x^2 + 234*x^3 + 6019*x^4 + 226656*x^5 +...+ A212370(n)*x^n +...
CROSSREFS
Cf. A212370.
Sequence in context: A171193 A357393 A371315 * A112463 A009471 A301990
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 10 2012
STATUS
approved