login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A212374
Primes congruent to 1 mod 23.
3
47, 139, 277, 461, 599, 691, 829, 967, 1013, 1151, 1289, 1381, 1427, 1657, 1933, 1979, 2347, 2393, 2531, 3037, 3083, 3221, 3313, 3359, 3727, 3911, 4003, 4049, 4463, 4831, 4877, 4969, 5107, 5153, 5521, 5659, 5843, 5981, 6073, 6211, 6257, 6763, 6947, 7039, 7177
OFFSET
1,1
COMMENTS
This sequence is not the same as A040984. First disagreement at index 34: a(34)=5153, A040984(34)=5521.
LINKS
FORMULA
a(n) ~ 22n log n. - Charles R Greathouse IV, Jul 03 2016
MAPLE
select(p->irem(p, 23)=1, [ithprime(i)$i=1..1000])[]; # Alois P. Heinz, Sep 12 2012
MATHEMATICA
Select[Prime[Range[1000]], Mod[#, 23] == 1 &]
Select[Range[1, 7200, 23], PrimeQ] (* Harvey P. Dale, Jul 02 2018 *)
PROG
(Magma) [p: p in PrimesUpTo(7200) | p mod 23 eq 1];
(PARI) is(n)=isprime(n) && n%23==1 \\ Charles R Greathouse IV, Jul 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Sep 12 2012
STATUS
approved