login
A371315
E.g.f. satisfies A(x) = -log(1 - x)/(1 - A(x))^3.
2
0, 1, 7, 110, 2796, 98754, 4469334, 246741984, 16079405784, 1208082769560, 102810760773096, 9774841791650880, 1026870593449179264, 118121793328191431232, 14766518531481521488704, 1993367920121834019649920, 288988424345833831094150016
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (4*k-2)!/(3*k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( 1 - exp(-x * (1 - x)^3) ). - Seiichi Manyama, Sep 08 2024
PROG
(PARI) a(n) = sum(k=1, n, (4*k-2)!/(3*k-1)!*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A370463.
Sequence in context: A101924 A171193 A357393 * A212371 A112463 A009471
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2024
STATUS
approved