login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371315
E.g.f. satisfies A(x) = -log(1 - x)/(1 - A(x))^3.
2
0, 1, 7, 110, 2796, 98754, 4469334, 246741984, 16079405784, 1208082769560, 102810760773096, 9774841791650880, 1026870593449179264, 118121793328191431232, 14766518531481521488704, 1993367920121834019649920, 288988424345833831094150016
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (4*k-2)!/(3*k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( 1 - exp(-x * (1 - x)^3) ). - Seiichi Manyama, Sep 08 2024
PROG
(PARI) a(n) = sum(k=1, n, (4*k-2)!/(3*k-1)!*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A370463.
Sequence in context: A101924 A171193 A357393 * A212371 A112463 A009471
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2024
STATUS
approved