login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101924
Numerators of expansion of e.g.f. 2^(-1/2) * arccsch(cos(x)), even powers only.
1
1, 7, 109, 3163, 166201, 14952367, 2002052389, 353291166403, 77829008955121, 21170264082173527, 7106489649576530269, 2913186117837522604843, 1426879448953133350342441, 816516326741659045770111487, 537701607855913139967684905749, 404270165862091267387117902574483
OFFSET
1,2
COMMENTS
Odd coefficients are zero, denominators are 2^n.
FORMULA
arccsch(cos(x)) = log(sqrt(2)+1) + (1/sqrt(2)) * ((1/2)*x^2/2! + (7/4)*x^4/4! + (109/8)*x^6/6! + (3163/16)*x^8/8! + ...).
arcsech(cos(x)) = Pi/2 - log(sqrt(2)+1) - (1/sqrt(2)) * (-(1/2)*x^2/2! + (7/4)*x^4/4! + (109/8)*x^6/6! + (3163/16)*x^8/8! + ...). [warning: this formula appears to be incorrect since arcsech(cos(0)) = 0; - Michel Marcus, Sep 23 2022]
MATHEMATICA
Table[Numerator[(2n)!SeriesCoefficient[ArcCsch[Cos[x]]/Sqrt[2], {x, 0, 2n}]], {n, 14}] (* Stefano Spezia, Aug 29 2022 *)
PROG
(PARI) arccsch(x) = log((1+sqrt(x^2+1))/x);
lista(nn) = localprec(4*nn); my(x='x+O('x^(nn+1)), v=Vec((serlaplace(arccsch(cos(x))))/quadgen(8))); apply(round, vector(#v\2-1, k, v[2*k+1]*2^k)); \\ Michel Marcus, Sep 21 2022
CROSSREFS
Sequence in context: A357395 A371317 A303109 * A171193 A357393 A371315
KEYWORD
nonn,frac
AUTHOR
Ralf Stephan, Dec 27 2004
EXTENSIONS
More terms from Michel Marcus, Sep 20 2022
STATUS
approved