login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101925
a(n) = A005187(n) + 1.
14
1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 19, 20, 23, 24, 26, 27, 32, 33, 35, 36, 39, 40, 42, 43, 47, 48, 50, 51, 54, 55, 57, 58, 64, 65, 67, 68, 71, 72, 74, 75, 79, 80, 82, 83, 86, 87, 89, 90, 95, 96, 98, 99, 102, 103, 105, 106, 110, 111, 113, 114, 117, 118, 120, 121, 128, 129
OFFSET
0,2
COMMENTS
Exponent of 2 in the sequences A032184, A052278, A060055, A066318, A088229, A101926.
p(n) sequence for k=2, s=0. p(n) = min(j: A046699(j) = n). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
LINKS
B. Jackson and F. Ruskey, Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages.
F. Ruskey, C. Deugau, The Combinatorics of Certain k-ary Meta-Fibonacci Sequences, JIS 12 (2009) 09.4.3. [This is a later version than that in the GenMetaFib.html link]
FORMULA
Recurrence: a(2n) = 2a(n) + A000120(n) - 1, a(2n+1) = a(2n) + 1.
G.f.: (1 / 1-z) * (z + z * sum(z^(2^i) * (s + (1 / (1 - z^(2^k)))),i=0..infinity)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
MATHEMATICA
Table[IntegerExponent[(2 n)!, 2] + 1, {n, 0, 65}] (* or *)
Table[2 n - DigitCount[2 n, 2, 1] + 1, {n, 0, 65}] (* Michael De Vlieger, Feb 04 2017 *)
PROG
(PARI) a(n)=1+sum(k=1, n, valuation(k, 2)+1)
(PARI) a(n)=if(n==0, 1, if((n%2)==0, 2*a(n/2)+subst(Pol(binary(n)), x, 1)-1, a(n-1)+1))
(PARI) a(n)=2*n+1-hammingweight(n) \\ Charles R Greathouse IV, Dec 29 2022
(Python 3.10+)
def A101925(n): return (n<<1)-n.bit_count()+1 # Chai Wah Wu, Jul 13 2022
CROSSREFS
Bisection of A089279. First differences are in A001511.
Sequence in context: A288214 A376090 A117121 * A101884 A118179 A096603
KEYWORD
nonn
AUTHOR
Ralf Stephan, Dec 28 2004
STATUS
approved