login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101922
Numerators of expansion of e.g.f. 2^(-1/2) * arcsinh(cos(x)), even powers only.
3
-1, -1, 11, 491, 11159, -460681, -103577629, -8160790429, 624333860399, 386787409545839, 68810049201689531, -6999828208693648549, -9872674440874152431161, -3255253386897615662908441, 346248578699462435167833491, 1072454627614122049417452882131
OFFSET
1,3
COMMENTS
With sign pattern +--+--: numerators of expansion of 2^(-1/2) * arcsinh(cosh(x)).
Odd coefficients are zero, denominators are 2^n.
FORMULA
arcsinh(cos(x)) = log(sqrt(2)+1) + 1/sqrt(2) * (-(1/2)*x^2/2! - (1/4)*x^4/4! + (11/8)*x^6/6! + (491/16)*x^8/8! + ...).
arccosh(cos(x)) = Pi/2 - log(sqrt(2)+1) + 1/sqrt(2) * ((1/2)*x^2/2! + (1/4)*x^4/4! - (11/8)*x^6/6! - (491/16)*x^8/8! - ...).
a(n) = - A263246(n). - Michel Marcus, Sep 11 2022
MATHEMATICA
Table[Numerator[(2n)!SeriesCoefficient[ArcSinh[Cos[x]]/Sqrt[2], {x, 0, 2n}]], {n, 14}] (* Stefano Spezia, Aug 29 2022 *)
PROG
(PARI) lista(nn) = my(x='x + O('x^(nn+1)), p=serlaplace(asinh(cos(x))/sqrt(2))); vector(nn\2, k, round(polcoef(p, 2*k)*2^k)); \\ Michel Marcus, Sep 11 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ralf Stephan, Dec 27 2004
EXTENSIONS
More terms from Michel Marcus, Sep 11 2022
STATUS
approved