login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101921
a(2n) = a(n) + 2n - 1, a(2n+1) = 4n.
12
0, 1, 4, 4, 8, 9, 12, 11, 16, 17, 20, 20, 24, 25, 28, 26, 32, 33, 36, 36, 40, 41, 44, 43, 48, 49, 52, 52, 56, 57, 60, 57, 64, 65, 68, 68, 72, 73, 76, 75, 80, 81, 84, 84, 88, 89, 92, 90, 96, 97, 100, 100, 104, 105, 108, 107, 112, 113, 116, 116, 120, 121, 124, 120, 128
OFFSET
1,3
COMMENTS
Exponent of 2 in tangent numbers A000182.
Also, exponent of 2 in the sequences A008775, A009670, A009764, A009798, A012227, A024236, A024277, A024299, A052510.
Also, exponent of 2 in 4^(n-1)/n. [David Brink, Aug 08 2013]
FORMULA
a(n) = 2n - 2 - A007814(n).
a(n) = A007814(A000182(n)).
G.f.: Sum_{k>=0} t^2*(1+4*t+t^2)/(1-t^2)^2 where t=x^2^k.
EXAMPLE
G.f. = x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 9*x^6 + 12*x^7 + 11*x^8 + 16*x^9 + 17*x^10 + ...
MATHEMATICA
a[n_]:= If[n<1, 0, 2n -2 - IntegerExponent[n, 2]]; (* Michael Somos, Mar 02 2014 *)
PROG
(PARI) a(n)=valuation(4^(n-1)/n, 2); \\ Joerg Arndt, Aug 13 2013
(Sage) [2*n-2 -valuation(n, 2) for n in (1..100)] # G. C. Greubel, Nov 29 2021
(Python)
def A101921(n): return (n-1<<1)-(~n & n-1).bit_length() # Chai Wah Wu, Apr 14 2023
KEYWORD
nonn
AUTHOR
Ralf Stephan, Dec 21 2004
STATUS
approved