login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024299
a(n) = (2*n)! [x^(2*n)] log(1 + tanh(x)^2)/2.
4
0, 1, -14, 496, -34544, 4055296, -724212224, 183218384896, -62380415842304, 27507260369207296, -15250924309151350784, 10384039093607251050496, -8517991922318587187953664, 8285309769460200661892202496, -9429010285390912531529354706944
OFFSET
0,3
LINKS
FORMULA
a(n) = A009403(n)/2.
a(n) = -2^(2*n-1)*(4^n - 2)*(4^n - 1)*zeta(1-2*n) for n >= 1. - Peter Luschny, Oct 29 2020
MAPLE
a := n -> `if`(n=0, 0, -2^(2*n-1)*(4^n-2)*(4^n-1)*Zeta(1-2*n)):
seq(a(n), n=0..14); # Peter Luschny, Oct 29 2020
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Log[1+Tanh[x]^2]/2, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Dec 12 2021 *)
PROG
(PARI) my(x='x+O('x^30), v = concat([0, 0], Vec(serlaplace (log(1+tanh(x)^2)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Oct 29 2020
(Magma)
L:=RiemannZeta();
[0] cat [-Round(2^(2*n-1)*(4^n-2)*(4^n-1)*Evaluate(L, 1-2*n)): n in [1..15]]; // G. C. Greubel, Jul 12 2022
(SageMath) [0]+[-2^(2*n-1)*(4^n-2)*(4^n-1)*zeta(1-2*n) for n in (1..15)] # G. C. Greubel, Jul 12 2022
CROSSREFS
Cf. A009403.
Sequence in context: A217337 A251867 A240411 * A190999 A378921 A320288
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs, Mar 1997
Previous Mathematica program replaced by Harvey P. Dale, Dec 12 2021
STATUS
approved