OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..215
FORMULA
a(n) = A009403(n)/2.
a(n) = -2^(2*n-1)*(4^n - 2)*(4^n - 1)*zeta(1-2*n) for n >= 1. - Peter Luschny, Oct 29 2020
MAPLE
a := n -> `if`(n=0, 0, -2^(2*n-1)*(4^n-2)*(4^n-1)*Zeta(1-2*n)):
seq(a(n), n=0..14); # Peter Luschny, Oct 29 2020
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Log[1+Tanh[x]^2]/2, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Dec 12 2021 *)
PROG
(PARI) my(x='x+O('x^30), v = concat([0, 0], Vec(serlaplace (log(1+tanh(x)^2)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Oct 29 2020
(Magma)
L:=RiemannZeta();
[0] cat [-Round(2^(2*n-1)*(4^n-2)*(4^n-1)*Evaluate(L, 1-2*n)): n in [1..15]]; // G. C. Greubel, Jul 12 2022
(SageMath) [0]+[-2^(2*n-1)*(4^n-2)*(4^n-1)*zeta(1-2*n) for n in (1..15)] # G. C. Greubel, Jul 12 2022
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs, Mar 1997
Previous Mathematica program replaced by Harvey P. Dale, Dec 12 2021
STATUS
approved