The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024299 a(n) = (2*n)! [x^(2*n)] log(1 + tanh(x)^2)/2. 4
0, 1, -14, 496, -34544, 4055296, -724212224, 183218384896, -62380415842304, 27507260369207296, -15250924309151350784, 10384039093607251050496, -8517991922318587187953664, 8285309769460200661892202496, -9429010285390912531529354706944 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = A009403(n)/2.
a(n) = -2^(2*n-1)*(4^n - 2)*(4^n - 1)*zeta(1-2*n) for n >= 1. - Peter Luschny, Oct 29 2020
MAPLE
a := n -> `if`(n=0, 0, -2^(2*n-1)*(4^n-2)*(4^n-1)*Zeta(1-2*n)):
seq(a(n), n=0..14); # Peter Luschny, Oct 29 2020
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Log[1+Tanh[x]^2]/2, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Dec 12 2021 *)
PROG
(PARI) my(x='x+O('x^30), v = concat([0, 0], Vec(serlaplace (log(1+tanh(x)^2)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Oct 29 2020
(Magma)
L:=RiemannZeta();
[0] cat [-Round(2^(2*n-1)*(4^n-2)*(4^n-1)*Evaluate(L, 1-2*n)): n in [1..15]]; // G. C. Greubel, Jul 12 2022
(SageMath) [0]+[-2^(2*n-1)*(4^n-2)*(4^n-1)*zeta(1-2*n) for n in (1..15)] # G. C. Greubel, Jul 12 2022
CROSSREFS
Cf. A009403.
Sequence in context: A217337 A251867 A240411 * A190999 A320288 A344114
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs, Mar 1997
Previous Mathematica program replaced by Harvey P. Dale, Dec 12 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 01:08 EDT 2024. Contains 372765 sequences. (Running on oeis4.)