The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024299 a(n) = (2*n)! [x^(2*n)] log(1 + tanh(x)^2)/2. 4
 0, 1, -14, 496, -34544, 4055296, -724212224, 183218384896, -62380415842304, 27507260369207296, -15250924309151350784, 10384039093607251050496, -8517991922318587187953664, 8285309769460200661892202496, -9429010285390912531529354706944 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..215 FORMULA a(n) = A009403(n)/2. a(n) = -2^(2*n-1)*(4^n - 2)*(4^n - 1)*zeta(1-2*n) for n >= 1. - Peter Luschny, Oct 29 2020 MAPLE a := n -> `if`(n=0, 0, -2^(2*n-1)*(4^n-2)*(4^n-1)*Zeta(1-2*n)): seq(a(n), n=0..14); # Peter Luschny, Oct 29 2020 MATHEMATICA With[{nn=30}, Take[CoefficientList[Series[Log[1+Tanh[x]^2]/2, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Dec 12 2021 *) PROG (PARI) my(x='x+O('x^30), v = concat([0, 0], Vec(serlaplace (log(1+tanh(x)^2)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Oct 29 2020 (Magma) L:=RiemannZeta(); [0] cat [-Round(2^(2*n-1)*(4^n-2)*(4^n-1)*Evaluate(L, 1-2*n)): n in [1..15]]; // G. C. Greubel, Jul 12 2022 (SageMath) [0]+[-2^(2*n-1)*(4^n-2)*(4^n-1)*zeta(1-2*n) for n in (1..15)] # G. C. Greubel, Jul 12 2022 CROSSREFS Cf. A009403. Cf. A003707, A101921. Sequence in context: A217337 A251867 A240411 * A190999 A320288 A344114 Adjacent sequences: A024296 A024297 A024298 * A024300 A024301 A024302 KEYWORD sign AUTHOR R. H. Hardin EXTENSIONS Extended with signs, Mar 1997 Previous Mathematica program replaced by Harvey P. Dale, Dec 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 01:08 EDT 2024. Contains 372765 sequences. (Running on oeis4.)