OFFSET
1,2
COMMENTS
Also nonnegative integers y in the solutions to 4*x^2-2*y^2+2*x-2*y = 0, the corresponding values of x being A220185.
LINKS
Colin Barker, Table of n, a(n) for n = 1..654
Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
FORMULA
a(n) = 35*a(n-1)-35*a(n-2)+a(n-3).
G.f.: -2*x^2*(x+7) / ((x-1)*(x^2-34*x+1)).
a(n) = (-4+(10+7*sqrt(2))*(17+12*sqrt(2))^(-n)+(10-7*sqrt(2))*(17+12*sqrt(2))^n)/8. - Colin Barker, Mar 02 2016
a(n) = A105635(4*n-4). - Greg Dresden, Aug 30 2021
EXAMPLE
14 is in the sequence because 14^2+15^2 = 196+225 = 421 = 190+231 = H(10)+H(11).
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {0, 14, 492}, 20] (* Vincenzo Librandi, Sep 06 2015 *)
PROG
(PARI) concat(0, Vec(-2*x^2*(x+7)/((x-1)*(x^2-34*x+1)) + O(x^100)))
(Magma) I:=[0, 14, 492]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Sep 06 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 10 2014
STATUS
approved