login
A003707
Expansion of e.g.f. log(1 + tan(x)).
(Formerly M3490)
11
0, 1, -1, 4, -14, 80, -496, 3904, -34544, 354560, -4055296, 51733504, -724212224, 11070525440, -183218384896, 3266330312704, -62380415842304, 1270842139934720, -27507260369207296, 630424777638805504, -15250924309151350784, 388362339077351014400, -10384039093607251050496
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
a(n) = Sum_{k=1..n} (-1)^(k+1) * evenp(n+k) * (-1)^((n+k)/2)/k * Sum_{j=k..n} j! * Stirling2(n, j) * 2^(n-j) * (-1)^(n+j-k) * binomial(j-1,k-1). [Vladimir Kruchinin, Aug 18 2010] [Corrected by Petros Hadjicostas, Jun 05 2020]
a(n) = Sum_{m=0..(n-1)/2} Sum_{j=0..2*m} binomial(j+n-2*m-1, n-2*m-1) * (j+n-2*m)! * 2^(2*m-j) * (-1)^(n-m+j-1) * Stirling2(n, j+n-2*m)/(n-2*m). [Vladimir Kruchinin, Jan 21 2012]
a(n) ~ (-1)^(n+1) * 4^n * (n-1)! / Pi^n. - Vaclav Kotesovec, Feb 16 2015
MAPLE
seq(coeff(series( log(1 +tan(x)), x, n+1)*n!, x, n), n = 0..25); # G. C. Greubel, Jun 08 2020
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Log[1 + Tan[x]], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Apr 11 2014 *)
PROG
(Maxima) a(n):=sum((-1)^(k+1)*if evenp(n+k) then (-1)^((n+k)/2)/k*sum(j!*stirling2(n, j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n) else 0, k, 1, n); /* Vladimir Kruchinin, Aug 18 2010 */ /* Corrected by Petros Hadjicostas, Jun 05 2020 */
(Maxima) a(n):=sum(sum(binomial(j+n-2*m-1, n-2*m-1)*(j+n-2*m)!*2^(2*m-j)*(-1)^(n-m+j-1)*stirling2(n, j+n-2*m), j, 0, 2*m)/(n-2*m), m, 0, (n-1)/2); /* Vladimir Kruchinin, Jan 21 2012 */
(PARI) my(x='x+O('x^66)); concat([0], Vec(serlaplace(log(1+tan(x))))) \\ Joerg Arndt, Sep 02 2013
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); [0] cat Coefficients(R!(Laplace( Log(1 + Tan(x)) ))); // G. C. Greubel, Jun 08 2020
(Sage)
def A003707_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( log(1 +tan(x)) ).egf_to_ogf().list()
A003707_list(25) # G. C. Greubel, Jun 08 2020
CROSSREFS
Bisections are A002436 and |A024299|.
Sequence in context: A186638 A187847 A277039 * A355950 A063862 A222497
KEYWORD
sign
EXTENSIONS
Name corrected, more terms, Joerg Arndt, Sep 02 2013
STATUS
approved