OFFSET
0,3
COMMENTS
|a(n)| is the number of ways to partition the set {1,2,...,2n} into an even number of odd size blocks. - Geoffrey Critzer, Apr 11 2010
Unsigned sequence has e.g.f. cosh(sinh(x)) (even powers only).
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 8th line of table.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..50
FORMULA
a(n) = sum(j=0..n, (2^(2*j+1)*sum(i=0..(n-j), (i-n+j)^(2*n)*binomial((2*n-2*j),i)*(-1)^(n-i))/(2*n-2*j)!)), n>0, a(1)=0. - Vladimir Kruchinin, Jun 08 2011
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*irem(j, 2)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(2*n)*(-1)^n:
seq(a(n), n=0..20); # Alois P. Heinz, Feb 11 2023
MATHEMATICA
Take[With[{nn=40}, CoefficientList[Series[Cos[Sin[x]], {x, 0, nn}], x] Range[0, nn]!], {1, -1, 2}] (* Harvey P. Dale, Sep 18 2011 *)
PROG
(Maxima)
a(n):=sum((2^(2*j+1)*sum((i-n+j)^(2*n)*binomial((2*n-2*j), i)*(-1)^(n-i), i, 0, (n-j))/(2*n-2*j)!), j, 0, n); /* Vladimir Kruchinin, Jun 08 2011 */
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved