OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
Vladimir V. Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = b(2*n-1), b(n) = sum(k=1..n, ((-1)^(n-k)+1)*sum(j=k..n, binomial(j-1,k-1)*j!*2^(n-j-1)*(-1)^((n+k)/2+j)*stirling2(n,j))*((-1)^((k+3)/2)-(-1)^((3*k+3)/2))/(2*k!)). - Vladimir Kruchinin, Apr 23 2011
a(n) = sum(m=0..n, sum(j=0..2*n-2*m, binomial(j+2*m,2*m)*(j+2*m+1)!*2^(2*n-2*m-j)*(-1)^(n+j)* stirling2(2*n+1,j+2*m+1))/((2*m+1)!)). - Vladimir Kruchinin, Jan 21 2012
MATHEMATICA
With[{nn=50}, Take[CoefficientList[Series[Sin[Tan[x]], {x, 0, nn}], x] Range[ 0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Jul 25 2012 *)
PROG
(Maxima)
a(n):=b(2*n-1);
b(n):=sum(((-1)^(n-k)+1)*sum(binomial(j-1, k-1)*j!*2^(n-j-1)*(-1)^((n+k)/2+j)*stirling2(n, j), j, k, n)*((-1)^((k+3)/2)-(-1)^((3*k+3)/2))/(2*k!), k, 1, n); /* Vladimir Kruchinin, Apr 23 2011 */
a(n):=sum(sum(binomial(j+2*m, 2*m)*(j+2*m+1)!*2^(2*n-2*m-j)*(-1)^(n+j)*stirling2(2*n+1, j+2*m+1), j, 0, 2*n-2*m)/((2*m+1)!), m, 0, n); /* Vladimir Kruchinin, Jan 21 2012 */
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Corrected name, Joerg Arndt, Apr 23 2011
More terms from Harvey P. Dale, Jul 25 2012
STATUS
approved