login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003706
E.g.f. sin(tan(x)), zeros omitted.
(Formerly M3176)
7
1, 1, -3, -275, -15015, -968167, -77000363, -7433044411, -843598411471, -107426835190735, -14072980460605907, -1424712499632406371, 164163646840636339593, 237037449673450822122569, 155015924346163216960553093, 92387809011599803660871724021
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vladimir V. Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = b(2*n-1), b(n) = sum(k=1..n, ((-1)^(n-k)+1)*sum(j=k..n, binomial(j-1,k-1)*j!*2^(n-j-1)*(-1)^((n+k)/2+j)*stirling2(n,j))*((-1)^((k+3)/2)-(-1)^((3*k+3)/2))/(2*k!)). - Vladimir Kruchinin, Apr 23 2011
a(n) = sum(m=0..n, sum(j=0..2*n-2*m, binomial(j+2*m,2*m)*(j+2*m+1)!*2^(2*n-2*m-j)*(-1)^(n+j)* stirling2(2*n+1,j+2*m+1))/((2*m+1)!)). - Vladimir Kruchinin, Jan 21 2012
MATHEMATICA
With[{nn=50}, Take[CoefficientList[Series[Sin[Tan[x]], {x, 0, nn}], x] Range[ 0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Jul 25 2012 *)
PROG
(Maxima)
a(n):=b(2*n-1);
b(n):=sum(((-1)^(n-k)+1)*sum(binomial(j-1, k-1)*j!*2^(n-j-1)*(-1)^((n+k)/2+j)*stirling2(n, j), j, k, n)*((-1)^((k+3)/2)-(-1)^((3*k+3)/2))/(2*k!), k, 1, n); /* Vladimir Kruchinin, Apr 23 2011 */
a(n):=sum(sum(binomial(j+2*m, 2*m)*(j+2*m+1)!*2^(2*n-2*m-j)*(-1)^(n+j)*stirling2(2*n+1, j+2*m+1), j, 0, 2*n-2*m)/((2*m+1)!), m, 0, n); /* Vladimir Kruchinin, Jan 21 2012 */
CROSSREFS
Sequence in context: A171358 A115477 A051365 * A068250 A364617 A263884
KEYWORD
sign
EXTENSIONS
Corrected name, Joerg Arndt, Apr 23 2011
More terms from Harvey P. Dale, Jul 25 2012
STATUS
approved