login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051365
Number of 4-element families of an n-element set such that every 3 members of the family have a nonempty intersection.
1
0, 0, 0, 3, 275, 8475, 192385, 3831093, 71466675, 1285857975, 22632300245, 392522268633, 6734698919575, 114576024346875, 1935649374363705, 32505459713369373, 543014736097852475, 9029329231317194175, 149522990698790644765, 2466942184607949641313
OFFSET
0,4
REFERENCES
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
LINKS
FORMULA
a(n) = (1/4!)*(16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6).
G.f.: -x^3*(47062848*x^7 -42816008*x^6 +13976678*x^5 -2170583*x^4 +168932*x^3 -5672*x^2 +2*x +3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(7*x -1)*(8*x -1)*(11*x -1)*(12*x -1)*(13*x -1)*(14*x -1)*(16*x -1)). - Colin Barker, Jul 12 2013
MATHEMATICA
Table[1/4! (16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
PROG
(PARI) for(n=0, 50, print1((16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
(Magma) [(16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda
EXTENSIONS
More terms from Colin Barker, Jul 12 2013
STATUS
approved