login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051366
Number of 6-element families of an n-element set such that every 4 members of the family have a nonempty intersection.
1
0, 0, 0, 0, 112, 39761, 5318420, 506289623, 41378309308, 3133123494417, 227657567966500, 16152548751321851, 1129224692910819164, 78169242144478858373, 5373159786842137703140, 367368738925063893430959
OFFSET
0,5
REFERENCES
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
LINKS
FORMULA
a(n) = (1/6!)*(64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120).
MATHEMATICA
Table[1/6! (64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda
STATUS
approved