login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318002
E.g.f.: 2*cosh(x) / (1 + sqrt(1 - 2*sinh(2*x))).
2
1, 1, 5, 37, 425, 6601, 129005, 3044077, 84239825, 2675886481, 95979282005, 3837251617717, 169216980911225, 8160026826620761, 427179965967027005, 24127907244206776957, 1462542541799076574625, 94704025153744512625441, 6524332029969395884644005, 476487260493293293849001797, 36772596077297424381362590025, 2990260766874609440239439756521
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies:
(1a) A(x) = cosh(x) + sinh(x)*A(x)^2.
(1b) A(x) = cosh(x) * Sum_{n>=0} binomial(2*n,n)/(n+1) * sinh(2*x)^n/2^n.
(1c) A(x) = (1 - sqrt(1 - 2*sinh(2*x))) / (2*sinh(x)).
(2) A( -log(A(x)) ) = exp(-x).
(3a) 1 = cosh(x + log(A(x))) + sinh(x - log(A(x))).
(3b) 1 = Sum_{n>=0} ( x + (-1)^n*log(A(x)) )^n/n!.
a(n) ~ 5^(1/4) * phi^(3/2) * 2^(n - 1/2) * n^(n-1) / (exp(n) * log(phi)^(n - 1/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 21 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 425*x^4/4! + 6601*x^5/5! + 129005*x^6/6! + 3044077*x^7/7! + 84239825*x^8/8! + 2675886481*x^9/9! + ...
such that
A(x) = cosh(x) + sinh(x)*A(x)^2.
RELATED SERIES.
log(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 256*x^4/4! + 3840*x^5/5! + 73024*x^6/6! + 1688064*x^7/7! + 45991936*x^8/8! + ... + A318000(n)*x^n/n! + ...
where A( -log(A(x)) ) = exp(-x).
A(x)^2 = 1 + 2*x + 12*x^2/2! + 104*x^3/3! + 1296*x^4/4! + 21152*x^5/5! + 428352*x^6/6! + 10381184*x^7/7! + 293304576*x^8/8! + 9472819712*x^9/9! + ...
MATHEMATICA
With[{nn=30}, CoefficientList[Series[(2 Cosh[x])/(1+Sqrt[1-2Sinh[2x]]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 31 2024 *)
PROG
(PARI) {a(n) = my(A = 2*cosh(x +x^2*O(x^n)) / (1 + sqrt(1 - 2*sinh(2*x +x^2*O(x^n)))) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A318000 (log(A(x))).
Sequence in context: A292873 A161565 A235345 * A323567 A304865 A003709
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2018
STATUS
approved