login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161565
E.g.f. satisfies: A(x) = exp(x*exp(2*x*A(x))).
5
1, 1, 5, 37, 417, 6201, 115393, 2583141, 67643201, 2029868785, 68699859201, 2589393498429, 107580709769569, 4885086832499433, 240716442970201409, 12793428673619226901, 729511897042502788737, 44427614415877495608801
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} 2^(n-k) * C(n,k) * (n-k+1)^(k-1) * k^(n-k).
a(n) ~ sqrt(LambertW(1/r)) * n^(n-1) / (2*exp(n)*r^(n+1)), where r = 0.256263163133653382... is the root of the equation 1/LambertW(1/r) = -log(2*r^2) - LambertW(1/r). - Vaclav Kotesovec, Feb 28 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 417*x^4/4! +...
log(A(x)) = x*B(x) where B(x) = exp(2*x*A(x)) = e.g.f. of A161566:
B(x) = 1 + 2*x + 8*x^2/2! + 62*x^3/3! + 696*x^4/4! + 10362*x^5/5! +...
MATHEMATICA
Flatten[{1, Table[Sum[2^(n-k) * Binomial[n, k] * (n-k+1)^(k-1) * k^(n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 28 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, 2^(n-k)*binomial(n, k) * (n-k+1)^(k-1) * k^(n-k))}
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=exp(x*exp(2*x*A+O(x^n)))); n!*polcoeff(A, n, x)}
CROSSREFS
Cf. A161566.
Sequence in context: A173796 A352122 A292873 * A235345 A318002 A323567
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2009
STATUS
approved