login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352122
Expansion of e.g.f. (2 - exp(-3*x))^(1/3).
2
1, 1, -5, 37, -413, 6421, -128285, 3125557, -89781053, 2969440021, -111109062365, 4639580153077, -213856576973693, 10784605095793621, -590598038062108445, 34901993971832092597, -2213771863243583654333, 150004882482828402563221
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-3)^(n-k) * (Product_{j=0..k-1} (-3*j+1)) * Stirling2(n,k).
a(n) ~ n! * (-1)^(n+1) * Gamma(1/3) * 3^(n - 1/2) / (Pi * 2^(2/3) * n^(4/3) * log(2)^(n - 1/3)). - Vaclav Kotesovec, Mar 06 2022
MATHEMATICA
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[-3*x])^(1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((2-exp(-3*x))^(1/3)))
(PARI) a(n) = sum(k=0, n, (-3)^(n-k)*prod(j=0, k-1, -3*j+1)*stirling(n, k, 2));
CROSSREFS
Cf. A352113.
Sequence in context: A333285 A209671 A173796 * A292873 A161565 A235345
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 05 2022
STATUS
approved