login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352119
Expansion of e.g.f. 1/(2 - exp(4*x))^(1/4).
7
1, 1, 9, 121, 2289, 56401, 1713849, 61939081, 2595199329, 123690992161, 6608289658089, 391154820258841, 25408740616159569, 1797051730819428721, 137463201511019813529, 11308020549364112399401, 995455518982520306979009, 93373681491447943767190081
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(n) ~ n! * 2^(2*n - 1/4) / (Gamma(1/4) * n^(3/4) * log(2)^(n + 1/4)). - Vaclav Kotesovec, Mar 05 2022
From Seiichi Manyama, Nov 18 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 3/4 * k/n) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) - 2*Sum_{k=1..n-1} (-4)^k * binomial(n-1,k) * a(n-k). (End)
MATHEMATICA
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(4*x))^(1/4)))
(PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2022
STATUS
approved