OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(n) ~ n! * 2^(2*n - 1/4) / (Gamma(1/4) * n^(3/4) * log(2)^(n + 1/4)). - Vaclav Kotesovec, Mar 05 2022
From Seiichi Manyama, Nov 18 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 3/4 * k/n) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) - 2*Sum_{k=1..n-1} (-4)^k * binomial(n-1,k) * a(n-k). (End)
MATHEMATICA
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(4*x))^(1/4)))
(PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2022
STATUS
approved