The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352118 Expansion of e.g.f. 1/(2 - exp(3*x))^(1/3). 8
 1, 1, 7, 73, 1063, 20041, 464167, 12752713, 405439783, 14641740361, 592050220327, 26499885031753, 1300723181304103, 69470729022993481, 4010891467932629287, 248920020505516389193, 16525139232054244298023, 1168557027163488299171401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..17. FORMULA a(n) = Sum_{k=0..n} 3^(n-k) * (Product_{j=0..k-1} (3*j+1)) * Stirling2(n,k). a(n) ~ n! * 3^n / (2^(1/3) * Gamma(1/3) * n^(2/3) * log(2)^(n + 1/3)). - Vaclav Kotesovec, Mar 05 2022 From Seiichi Manyama, Nov 18 2023: (Start) a(0) = 1; a(n) = Sum_{k=1..n} 3^k * (1 - 2/3 * k/n) * binomial(n,k) * a(n-k). a(0) = 1; a(n) = a(n-1) - 2*Sum_{k=1..n-1} (-3)^k * binomial(n-1,k) * a(n-k). (End) MATHEMATICA m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *) PROG (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(3*x))^(1/3))) (PARI) a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 2)); CROSSREFS Cf. A000670, A352117, A352119. Cf. A352070. Sequence in context: A112939 A058350 A048174 * A258379 A325930 A360544 Adjacent sequences: A352115 A352116 A352117 * A352119 A352120 A352121 KEYWORD nonn AUTHOR Seiichi Manyama, Mar 05 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 10:38 EDT 2024. Contains 371791 sequences. (Running on oeis4.)