OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..352
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( (-2/3) * LambertW(-3*x/2 * exp(3*x/2)) ).
E.g.f.: A(x) = ( -LambertW(-3*x/2 * exp(3*x/2)) / (3*x/2 * exp(3*x/2)) )^(2/3).
E.g.f.: A(x) = ( Sum_{k>=0} (k+1)^(k-1) * (3*x/2 * exp(3*x/2))^k / k! )^(2/3).
a(n) = (1/2^(n-1)) * Sum_{k=0..n} (3*k)^(n-k) * (3*k+2)^(k-1) * binomial(n,k).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 3^(n-1) * n^(n-1) / (2^(n-1) * exp(n - 2/3) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Feb 17 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2*lambertw(-3/2*x*exp(3*x/2))/3)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-3*x/2*exp(3*x/2))/(3*x/2*exp(3*x/2)))^(2/3)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((sum(k=0, N, (k+1)^(k-1)*(3*x/2*exp(3*x/2))^k/k!))^(2/3)))
(PARI) a(n) = sum(k=0, n, (3*k)^(n-k)*(3*k+2)^(k-1)*binomial(n, k))/2^(n-1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 11 2023
STATUS
approved