login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352120
G.f. A(x) satisfies: Product_{n>=1} (1 + x^n*A(x)) = Product_{n>=1} (1 + x^n/(1-x)^n).
1
1, 1, 2, 5, 10, 20, 43, 93, 194, 403, 842, 1755, 3656, 7643, 15976, 33281, 69164, 143558, 297619, 616625, 1277729, 2647861, 5485300, 11356731, 23495794, 48567063, 100301668, 206994479, 426941231, 880227976, 1814221503, 3738368348, 7701376466
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n and P(x) = Product_{n>=1} (1 + x^n/(1-x)^n) satisfies:
(1) P(x) = Product_{n>=1} (1 + x^n*A(x)).
(2) P(x) = Sum_{n>=0} x^(n*(n+1)/2) * A(x)^n / (Product_{k=1..n} (1 - x^k)).
(3) 1/P(x) = Sum_{n>=0} (-x)^n * A(x)^n / (Product_{k=1..n} (1 - x^k)).
(4) log(P(x)) = Sum_{n>=1} x^n * Sum_{d|n} -(-A(x))^(n/d) * d/n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 20*x^5 + 43*x^6 + 93*x^7 + 194*x^8 + 403*x^9 + 842*x^10 + 1755*x^11 + 3656*x^12 + ...
such that the following products are equal:
P(x) = (1 + x*A(x)) * (1 + x^2*A(x)) * (1 + x^3*A(x)) * (1 + x^4*A(x)) * (1 + x^5*A(x)) * (1 + x^6*A(x)) * ...
P(x) = (1 + x/(1-x)) * (1 + x^2/(1-x)^2) * (1 + x^3/(1-x)^3) * (1 + x^4/(1-x)^4) * (1 + x^5/(1-x)^5) * ...
also, we have the sums
P(x) = 1 + x*A(x)/(1-x) + x^3*A(x)^2/((1-x)*(1-x^2)) + x^6*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
1/P(x) = 1 - x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-x^2)) - x^3*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^4*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+ ...
where
P(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 28*x^5 + 65*x^6 + 151*x^7 + 350*x^8 + 807*x^9 + 1850*x^10 + ... + A129519(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( prod(n=1, #A, (1 + x^n/(1-x +x*O(x^#A))^n)/(1 + x^n*Ser(A)) ), #A) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A129519.
Sequence in context: A006836 A129847 A330456 * A176692 A212951 A051109
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 05 2022
STATUS
approved