Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 11 2022 15:24:22
%S 1,1,2,5,10,20,43,93,194,403,842,1755,3656,7643,15976,33281,69164,
%T 143558,297619,616625,1277729,2647861,5485300,11356731,23495794,
%U 48567063,100301668,206994479,426941231,880227976,1814221503,3738368348,7701376466
%N G.f. A(x) satisfies: Product_{n>=1} (1 + x^n*A(x)) = Product_{n>=1} (1 + x^n/(1-x)^n).
%H Paul D. Hanna, <a href="/A352120/b352120.txt">Table of n, a(n) for n = 0..300</a>
%F G.f. A(x) = Sum_{n>=0} a(n)*x^n and P(x) = Product_{n>=1} (1 + x^n/(1-x)^n) satisfies:
%F (1) P(x) = Product_{n>=1} (1 + x^n*A(x)).
%F (2) P(x) = Sum_{n>=0} x^(n*(n+1)/2) * A(x)^n / (Product_{k=1..n} (1 - x^k)).
%F (3) 1/P(x) = Sum_{n>=0} (-x)^n * A(x)^n / (Product_{k=1..n} (1 - x^k)).
%F (4) log(P(x)) = Sum_{n>=1} x^n * Sum_{d|n} -(-A(x))^(n/d) * d/n.
%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 20*x^5 + 43*x^6 + 93*x^7 + 194*x^8 + 403*x^9 + 842*x^10 + 1755*x^11 + 3656*x^12 + ...
%e such that the following products are equal:
%e P(x) = (1 + x*A(x)) * (1 + x^2*A(x)) * (1 + x^3*A(x)) * (1 + x^4*A(x)) * (1 + x^5*A(x)) * (1 + x^6*A(x)) * ...
%e P(x) = (1 + x/(1-x)) * (1 + x^2/(1-x)^2) * (1 + x^3/(1-x)^3) * (1 + x^4/(1-x)^4) * (1 + x^5/(1-x)^5) * ...
%e also, we have the sums
%e P(x) = 1 + x*A(x)/(1-x) + x^3*A(x)^2/((1-x)*(1-x^2)) + x^6*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
%e 1/P(x) = 1 - x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-x^2)) - x^3*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^4*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+ ...
%e where
%e P(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 28*x^5 + 65*x^6 + 151*x^7 + 350*x^8 + 807*x^9 + 1850*x^10 + ... + A129519(n)*x^n + ...
%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
%o A[#A] = polcoeff( prod(n=1,#A, (1 + x^n/(1-x +x*O(x^#A))^n)/(1 + x^n*Ser(A)) ),#A) );A[n+1]}
%o for(n=0,30, print1(a(n),", "))
%Y Cf. A129519.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Mar 05 2022