OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-2)^(n-k) * (Product_{j=0..k-1} (-2*j+1)) * Stirling2(n,k).
a(n) ~ (-1)^(n+1) * 2^n * n^(n-1) / (log(2)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Mar 06 2022
MATHEMATICA
m = 18; Range[0, m]! * CoefficientList[Series[(2 - Exp[-2*x])^(1/2), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(2-exp(-2*x))))
(PARI) a(n) = sum(k=0, n, (-2)^(n-k)*prod(j=0, k-1, -2*j+1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 05 2022
STATUS
approved